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ABSTRACT

1%
1%, This survey of image restoration techniques presents a concise overview of
N, the most useful restoration methods. Linear spatially invariant and linear spa-

tially variant image restoration techniques are described and the strengths and
weaknesses of each approach are identified. Examples of restored images for
the various techniques are given. To provide guidelines for choosing a restora-
tion technique for a particular application, a comparison of the techniques is
made. The restoration methods are compared and evaluated based on the fol-

%' lowing criteria: restored image visual quality, performance in the presence of
additive image-independent noise, degree of a priori knowledge required, and
computational complexity.
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EXECUTIVE SUMMARY

This technical report gives a broad overview of the field are given in Section 3.0. Methods of direct measurement
of image restoration and focuses on the most commonly of the system point spread function from the images of
used and successful restoration techniques. Comparisons point, line, and edge sources are outlined. Estimation
of these techniques are made so that the reader who is techniques that use homomorphic signal processing con-
facd with a specific application can quickly perform the cepts are also presented.
necessary trade-offs to choose an appropriate restoration The main body of the report, Section 4.0, examines
method. the derivation of linear spatially invariant and variant

limage restoration is defined as the processing per- restoration techniques. The restoration criterion motivat-
formed on a degraded image to remove or reduce the de- ing each technique is supplied and the assumptions and
grading effects. Restoration differs from image enhance- limitations of each method are identified. Techniques de-

_ rncnm in that it requires prior knowledge of the degrada- rived include simple inverse filtering, constrained decon-
, tion phenomena. The degradations in an imaging system volution, homomorphic deconvolution, and maximum

- arise from the filtering effects of the optical elements, a posteriori estimation. Superresolution methods are also
electrical components, and surrounding environment, briefly discussed.

To lay the foundation for the analytic methods dis- Section 5.0 compares the image restoration techniques
cussed, basic models of imaging systems are introduced considered. The methods are compared against the fol-
in SecticIn 2.0 and the effects of tese systems on the lowing criteria: visual restoration quality, noise perfor-
origiial object are identified. Linear spatially variant and mance, a priori knowledge, and computational complex-
invariant as well as spatially separable systems arc do- ity. The information in this section offers guidelines for
fined. Since restoration techniques require knowledge of choosing a restoration technique for a particular applica-

. the degrading phenomena, methods for determining these tion. Conclusions and potential areas for future investiga-
degradations a posteriori from an output blurred image tion are discussed in Section 6.0.
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1.0 INTRODUCTION

This technical memorandum surveys the field of im- 1.2 SOURCES OF IMAGE DEGRADATION
age restoration and lays the theoretical groundwork need-
ed to understand the concepts and alternatives in this In a real imaging system, the image is degraded by the

. branch of image processing. Although the scope of the net effect of numerous degradation phenomena. lndividu-
report is general in nature, the reader with a specific ap- al degradations (other than system noise) are typically
plication should be able to quickly compare and contrast modeled as having a linear filtering effect on the original
the restoration techniques applicable to his or her objcct. In general, the individual degradation effects may

'. problem. interact in a complicated fashion to produce the net effect
on the image. However, the overall system degradation

1 is usually modeled as the linearly cascaded effects of the
1.1 DEF'INITION OF RESTORATION individual degradations present in the system to ensure

Image restoration is defined as the processing per- ana gtic tractability.
formed on the image using a priori knowledge of the image degradations arise from a variety of sources, such

degrading phenomena to reduce or remove the degrad- as imaging system optics and electronics, and surrounding
ing effects. Restoration differs from image enhancement, environmental effects. Several major sources of image de-,, ng ffecs. estratin dffes frm iageenhacemnt, gradation are:
which uses primarily ac hoc techniques (frequently non- gradatio are:
linear) to bring out or alter certain aspects of the image. !. Image motion. When the object or imaging system
Enhancement techniques include histogram reshaping for experiences relative motion during the imaging time

to sharpen edges, of exposure, degradation results. Examples of degra-
* grs-lvel odiicaton,'cripenng"dation-inducing motions are random and determinis-and thresholding to segment the image. Image restora- tic camera vibrations, camera rotation, and linear

tion, on the other hand, seeks to undo, partially or whol-
ly, the degradation an image has undergone for the pur- camera motion along a flight path.
pose of restoring it to its original ideal form. 2. Turbulent media. Differences in air temperature atTo undo the degradation, we must have prior knowl- varying altitudes cause variations in the air's index

oedge of the degrading process. The a prri information of refraction and give rise to the random phenome-

rcquired by a restoration technique may simply be a gener- non turbulence. Hufnagel and Stanley' have char-
al analytic model for the degrading imaging system. An- a ith effec o thistte ofudeg i
other method may require detailed information about the both long- and short-term exposures.
s.stem filtering effects and the imaged object and noise 3. Diffraction-limited optics. The optical elements in
characteristics. The degree of prior knowledge available the imaging system have a filtering effect on the
for a specific application will thus influence the choice resulting image.2 Under very low noise condi-

of restoration technique. In Section 4.0 we consider resto- tions, even the filtering effect caused by an ideal

ration techniques that vary widely in the degree of prior imaging system may be reduced by restoration and

knowledge required. resolution beyond the diffraction limit ob-

Major sources of image degradation and specific resto- tamed.
ration examples are identified in this introductory section. 4. Optical aberrations. Aberrations present inthe im-

i he general analytic imaging system models used to derive aging system also degrade the output image. Resto-
the restoration approaches are presented in Section 2.0.
tection 3.0 discusses the a posteriori determination of the 'R. E. Hufnagel and N. R. Stanley, "Modulation TransferS idrtion s by d ir m ermntin e Function Associated with Image Transmission through Tur-iaging degradations by direct measurement ud as bulent Media.' J. Opt. Soc. Am. 54, 52-61 (1964).''tion miethods. This information is subsequently used as :.1. We. Goodman, Introduction to Fourier Optics, McGraw-

the prior kn,,wledge requisite for the restoration tech- i Sa Goanitco tF iOcM rHill, San Francisco (1968).
niques. Both linear spatially inkariant and variant tech- 'I. S. Huang. W. F. Sehreiber, and 0. J. Ttetiak, "Image
niquc , are outlined in Section 4.0, along with a few non- Processing," Proc. IEEE 59, 1586-1609 (1971).
linear restoration methods. Section 5.0 offers a compari- 'B. R. Frieden, "Restoring with Maximum Likelihood and
son of the techniques (Table 3 is especially useful) and Maximum Fntropy,- J. Opt. Soc. Am. 62, 511-518 (1972).
crizcria to consider %%hen choosing a restoration method B. R. Frieden and J. J. Burke, "Restoring with Maximum
tor a particular application. Conclusions and additional Entropy I1: Superresolution of Photographs of Diffraction-
commrcnt, are g'ien in Section 6.0. Blurred Impulses." J. Opt. Soc. Am. 62, 1202-1210 (1972).
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ration techniques have been de\veloped that reduce and processed long after the image was formed. How-
the effects of defocus, coma, curv at ure-o f- field, ever, the development of rapid algorithms and advanced
astigmatism, and distortion aberrations." hardware implementations should make real-time image

5.Thermal effects. Temperatture differentials across restoration feasible.
the imaging systemn elements and overall operating One of the first applications of image restoration was
temperature changes cai-, cause image degradation. in the 1960, at the California Institute of Technology
Spherical aberration and a shift in focus have been Jet Propulsion Laboratory. Images returned from the
shown to arise from thermal effects caused by Mariner spacecraft contained geometric distortion creat-
aerod\ namnic heating in infrared missile seeker sys- ed by the vidicon on-board camera. o Digital restora-
rein s. "tion techniques were used to remove the distortion. The

These are only a te\' of- the morc important degrad- algorithmn worked by locating registration reseau marks
me ceffect,,. Additional sources of deuradarion include and calculating a coordinate transformation that was
chromatic aberration, detector nonuniforinitics, camnera subseqtienrly applied to the image.
1,hlntteM ftc_ and ,can jitter in s ideo svstemns. Since then, restoration techniques have been applied

in the diverse areas of medicine (X rays, acoustic im-
agery) surveillance data (satellite and aircraft imagery),

1.3 APPLIl(ATIlON OF RESTORATION oil exploration (seismic signals), and forensic science
(smnudged fingerprints). Restoration has even found ap-

limace rcetoration can he applied to inan\ interest- plication in the music world as Stockham demonstrated
*ingL imiage probletil irl a ss ide ariers of' fields Most by restoring Enrico Caruso recordings using homo-

applications to lav arc restricted to (kaia that have beetn iorphic deconvolution.
,,o-rcd on lc iape 1 or oOther st!orage medium

2.0 IMAGING1 SN*ST'M MODEL.S

I k c\ 4lnitc and relucc the effect, ol h1e inmadCe dcLra- hlas been specified, analytic methods can be used to de-
* J-iI o eIc i c If I 1.0, a mati hemat cal tOLlodl rise restoration techniques. In this section, we first de-

for the t1IdCIII , !I x'dIl ( )nkcc a ~S\ '.ten mo l ine the inia~ing system in general terms and then impose
5 l low, icn C iltiuII.,,ki Iii, ica s tem desIcri~ption that

-___ ~ -.. -- _______ lead to anal~riieallN traclahlc mnodels.

I I). V. C an~tdic\ and \\ . IB. (ireen. ''Recenit [:eveiopments
* - \ \ '~ A In \1t \t. D '\ Il ~~;tr~ )itnaI ImltdLe lrocecssinu am the Imlage Processing tabo-

VC-lx~j in i o I ld,'' S,( I 'Im 65 ixo' t%1 at theic lt tPrlipulsol I ahoratoi\,. Proc. ILLEE60.
K -t P("t 21 s' 119-1).

I I !Loll" '' IIn.:Itt.rtI (ItslI, 1. 1tcha . M\. Cannon. and R. 1B. Inebretisen
HIi: 'J t 'tt-c Donn".11 kas t )(Ip~ Deckmolttnort thlronh tDisital ''Wmai t11roess ini!,'

Jil W~t I It' I I 1)(' 166 1p ]'156) tO , 11 1 t 63. 0-8 692 (1071).

10
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2.1 CANONIC IMAGING SYSTEM MODEL where (xo,Yo) are the coordinates in the object plane.
Although imaging systems are nonlinear (e.g., typical

A cdnonic model of image formation and detection is X-ray photographs), many are approximately linear
shown in Fig. 1. . The detected image plus noise is when within some operating constraints. To obtain a

more analytically tractable model, we make the sim-
g(x,,y,) = (b [b(x,,y,) + nI (x,,y,) plifying assumption of linearity and neglect the chro-

matic effects.
. + S2 (b(x,,y,) I n2 (xi,y) (1) If we restrict the temporal effects to relative motion

I-. between the imaging camera and the object during the
where n, and n, represent signal-independent noise, time of exposure, T, they can be incorporated into the
-S, I b In, is signal-dependent noise, S, I -I is the spatial coordinate dependency. For example, for ob-
detector response function, S2 I is the signal-depen- ject motion described by the functions

. dent noise function, and (xi ,yi) denote coordinates in

the image plane. For this canonic model, the functions
S, and S, may be nonlinear. x, mn (xoYoto) , (3)

The image radiant energy, b(xi,y,), is found by op-
erating on the object radiant energy by the system point A = m 2 (Xo,Yo,to,)
spread function (psf), h, which will be, in general, a
nonlinear function of spatial, temporal, and frequency inverse functions can be found such that
coordinates, as well as the object function, f, i.e.,

t, = k, (x,,yo,x , ) k 2 (Xo,Yo,Y,) , (4)
Sb(x,,,,t,, X, ) =

and the image radiant energy is described only in terms
1 h, , t f(XoYotoX) ,  of the object and image spatial coordinates.

x dx,, dy,, dt, dX, (2)

n 2 (xi, yj)

f(O'Y ) X i , yi
)  n3(x,, Yt

f(XoYo) hImage

2 D object grx, an
radiant energy Image formation e+rg¥ Detector a(xq, V e)

psf : S, bI Detected image

plus nose

n1 (xt, Yv)

Figure 1 Canonic imaging system model.

-H. C. Andrews and B. R. Hunt, Digital Image Restoration,
Prentice-Hall, Englewood Cliffs, N.J. (1977).

p.
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2.2 '.'%EAR SPATIALLY h(x,,v,,x0 ,y,,) h, (x , ,x(,) h, (.vi,Y,) (LSV)
V '-IANT/INVARIANT MODELS

= h1 (x, - Xo) h2 (Y, - yo) (LSI).
The simplifications discussed in Section 2.1 result in

" the expression for a linear spatially variant (LSV) im- (7)
aging system,

A separable LS1 psf might arise, for example, from a

h(.\ v, ) J(,,,, x,. ) unit-square-aperture ideal imaging system,

.,,,(5[ sin~r(x, - x,,), x x,.,)dx,, dv, (5) h(x,.y,,x,,,,) [sL nw --x-ox)]

Ir(, -)]

% where t is a function of all four spatial variables and X [sinr(y, . (8)
has been modified to incorporate any' relative motion '( (y, Y-)
bct\ ecn object and camera. A common example of an
ISV imaging system is one where the camera moves Separability offers the advantage of performing two-
.%ith constant linear velocity normal to the optical axis dimensional restoration by sequential one-dimensional

"" v hen imaging a three-dimensional scene. Objects in the operations. This results in a tremendous simplification

*.--O toreground will he blurred more than objects in the dis- in the computer implementation of the restoration al-
tance, resulting in spatially variant degradation. gorithm.

Further simplification results if the system obeys the Other restrictions may be put on the imaging system
property of superposition. Then the system is linear spa- such as nonnegativity to ensure positive images or loss-

.. tialh imnariant (ISI) and less imaging constraints. To coincide with digitized com-
puter array representations, we also need to develop a
discrete system model. A concise discrete representation

V ) h(x _ - I,, , - j,, lexicographically orders the N by N two-dimensional
object, noise, and image data into one-dimensional vec-

x f(x.v, ) (x,, dJ,, ,6) tors each of length N. The system psf can then be
modeled as an N2 by N2 matrix of values [HM result-
ing in

Mhich iN the familiar ts' o-dimcnsional convolution in-
tegral. Thik representation is particularly attractive since b = [HI f. (9)
it lend, itself to Fourier analysis. Consequently, many
rcstoration techniques have been developed for LSI im- The matrix [H can be shown to be block Toeplitz
acmei11 ,vstcni. for LSI imaging systems. 2 A matrix is Toeplitz if the

entries on each diagonal have the same value (i.e.,
S2Mh, = hk l for i-j = k- 1); a matrix is block

.3 S. . Toeplitz if it has a Toeplitz partitioning and each par-

tition submatrix is also Totplitz. A summary of the
- . ndtr certain circumstances, the imaging system psf resulting imaging models (noise-free case) for both con-

ma\ be ,patiall% separable and tinuous and discrete systems is given in Table I.

0
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Table 1
Summary of imaging system models.

Continuous system Discrete system

Noise-free imaging g(x,,y,) = 1jh(x,,y,,. 0 ,yo )f(xo,yo )dxodyo gij = h ,hkfk or
model k I

g [I]f (lexicographically ordered)

lo~sless incoherent g(x,,y,) > 0 gy 0
imaging f(v,,,y,,) > 0 fkl - 0

h(x,,,,x0 ,y o ) - 0 hUikl 0

-h(x,y,xo,y o ) dx, dy, = 1hkl I

t I

Linear spatially Nonseparable
variant

Va riant h(x,y,,x,y,,o) h(x,y,,x 0 ,y 0 ) [H] =

Separable

h(i ,y,,X,,.(, ) = h (x,,x,,)h, (y, ,y,, ) [H] = [H1 10 [H21

linear spatially Nonseparable
invariant h(x,,,,x,,v ) = h (Y, -xo,y, -y.) [HI = block Toeplitz

Separable

h(x,,y,,x_,., ) = h, (x, -xo )h2 (y, -y,,) [H] = [H11] 0 [H2]

[HI 1, [H2 Toeplitz

3.0 A POSTERIORI DEGRADATION DETERMINATION

- Restoration as defined in Section 1.0 requires a priori Various approaches for accomplishing restoration are
knowledge of the degradation performed on the original possible. The techniques outlined below are restricted
object. Most of the restoration techniques described in to LSI imaging system applications. However, if the sys-
Section 4.0 require knowledge of the imaging system tern is LSV, these techniques can be extended by divid-
psf. In practical restoration applications, we are corn- ing the image into isoplanatic patches to determine the

* monly faced %ith the task of a posteriori determination local psf in each region (see Section 4.3.1 for further
of the degrading pf rrom the output blurred image. discussion). If the original image has a specific struc-

13
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ture, direct measurement of the psf can be performed. (an isotropic function), H and therefore h are deter-
Point, line, and edge sources imaged by the system can mined. Otherwise we must find the 1sf for line sources
be used to directly measure or calculate the system positioned at varying angles in the image to determine
psf. " Alternately, psf estimation can be accomplished H along several radial lines. Interpolation is used to ob-
by homomorphic signal processing techniques per- tain the transfer function values at rectangular grid lo-
formed on the blurred image. If a specific parametric cations.
form for the degradation is asumed (e.g., linear con-
stant velocity blur, simple optical defocus), estimation 3.1.3 Edge Source Measurement
techniques that determine the model parameters can be Locate an isolated edge in the degraded image and
used to develop an expression for the system psf. 12 measure the edge spread function (esf). The derivative

of the esf is the 1sf and, therefore,

3.1 DEGRADATION PSF MEASUREMENT
TECHNIQUES He (f,f) (edge along y axis) . (13)

i2 7rf,
There are three direct measurement techniques that

can frequently be used to determine the system psf. From this result, we can determine the psf as before.
'.~. *,.Par-target test patterns imaged by the system are fre-
3.1.1 Point Source Measurement quently used for this technique.

Locate an image of an isolated point source in the
* . degraded output and measure the psf directly by

3.2 DEGRADATION PSF ESTIMATION
TECHNIQUES

I .,Y ) : h(X, - J',, , - ,
. ;The techniques described below are based on homo-
x _ (.v, ,vY) dx- ,, = h (XY 1  (10) morphic signal processing (HSP) and cepstral-like tech-

niques to estimate the degrading filter and its param-
-' . eters.This method is particularly applicable in astronomical

imaging with stellar point sources. 3.2.1 HSP Filter Estimation
Meaure"-tThe blurred image is subdivided into N regions. This-""-" 3.1.2 L~ine Source MeasurementLaa.a line source technique requires that the nonzero extent of the psf

blurred output and measure the line spread function (tsf) be small compared to the area of each region. Each re-
blredtpt a gion is Fourier transformed to yield

.- .-. "directly by

h-"' . _,- -,, r v., (v G, ( f, J, .. H (.,%, ) F, 0 f, j ), (14)

-.-. ( .') = h(.x, - A,,, v, - v,,) 6(.v,)
where i = , 2. N. The logarithm of the magni-

* d.v, dy,, tude is taken and the result is summed over he N regions

by
- h.. t .', , - v',, ) ct , h/(, )( il)

" in IG, I N In jHj + 1:n IF, 1 (15)
In the Fourier domain, , '

. The degrading filter is estimated as
I.T(..,v,) = G (J ,f,) = H(/k ,t) . (12)

whcre FTI I denotes a two-dimensional Fourier trans- HI exp [ n Gj - IFn

form. If the psf is known to he circularly symmetric 'I

. ..-. Rcnrcld and . _.Kak, i itWI Picture Proe ,,sijn . (16)
i2d ed., \cademic I'mro, NN\ York (1982). J
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For this technique to work, the object Fourier trans- by the linear constant velocity motion of the camera
form in each region must either be known or estimated. during exposure. Equations 3 and 4 (or others of that
Another possibility is to assume that for large enough N, form) can be used to determine the LSI psf,

,nIF, I -= Constant. (17) 1 0 <xcoS4 y ysin - vT

N h(xy) = and y = xtan4) (21)
The conditions that must be met to satisfy this last
criterion are not well defined and require further inves- 0 elsewhere.

tigation.
," The filter transfer function is

'- 3.2.2 Power Spectral Density Estimation
A related approach treats the object and image as

stochastic processes and uses the function power spec- sin (r fvT)ei fvT". HCf,fJ,. T (22)
tral densities (psd) to determine the degrading filter. For ?r fvT (
linear systems,

where Tis the time of exposure, v is the linear velocity,
S,= HI S , (18) 0 is the angle of motion relative to the x axis, and

f = f, cos 0 + fy sin 4.
where S,, and S, are the psd of the image and object This filter clearly has zero crossings and a phase func-
functions, respectively. The blurred image psd can be tion associated with it. The HSP techniques discussed
estimated by the spatial average in Section 3.2 will not work for this degradation and

some other method of estimating the filter is required.
In particular, we need to estimate the parameters vT

Q - IG, 12, (19) and 4. To accomplish this, we compute one-dimensional
I Fourier transforms of the log magnitude of the blurred

image spectrum with respect to both the f, and.fv fre-
where the assumption is made that the stochastic im- quency axes. The periodic structure of the filter transfer' age process is ergodic. The resulting filter is
aepoesfunction gives rise to peaks in the two one-dimensional

I ' Fourier transforms thus generated at the values

( IG, I 2 x = vT sin 4 (Fourier transform with respect to f,),
(2) and y = v T cos 0 (Fourier transform with respect tc'f I( f, ). This cepstral-like technique allows us to determine

both unknown parameters, vTand 4), which in turn uni-

The object psd, S,,, is either assumed known or is also quely specify the degrading filter.

estimated as a spatial average, and the IF, 3,
i = 1, 2 ... N are assumed known. 3.2.3.2 Simple defocus aberration. The degrada-

Both of the above estimation techniques lead to an tion arising from a badly defocussed optical system can
expression for the magnitude of the degrading filter; be modeled as the Airy disk pattern
they give no information about the filter phase. For
degrading filters that are known a priori to be real and J tA ifi. +f. (3
to contain no zero crossings (e.g., Gaussian blur), the H(f,, f. ) = , (23)
filter has been sufficiently determined. If the filter trans- A
fer function does contain zero crossings, we may be able
to postulate a parametric form for the filter. Fstimation where J, is a Bessel function of the first kind and A

" techniques can then be used to determine the parame- is the effective radius of the circular aperture. The log
tcrs. Two examples of this parametric estimation meth- magnitude of the image spectrum after inversion and
od are given below, clipping yields large positive values forming a circle of

radius A. With this technique, the radius can thus be
3.2.3 Parametric Filter Estimation estimated and the filter determined. Obviously, care

3.2.3.1 linear constant velocity blur. We consider must be taken with both parametric estimation methods
an imaging system here the only degradation is caused to avoid logarithms of zero values.

'a
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3.3 NOISE CONSIDERATIONS that the detector noise is independent from frame to
frame to effect a reduction in the noise variance.

So far, no mention of the effect of noise has been The imaging system psf can also be considered to be

made. In general, the model for the output image will varying from frame to frame while the object remains
consist of the linearly filtered object plus signal inde- unchanged. This is the case when detector camera mo-
pendent noise, tion or random turbulent media variations are incor-

porated in the psf. The summation over J image frames
= * f + i yields

and g' =h' * f + n' (25)

G = 11F + .' . (24) where the new noise term, n', retains the same mean
as the original noise but has a variance that is reduced

The introduction of noise into the system will clearly by the factor I/J. The new system psf is h' and is the
. degrade the measured and estimated values for the sys- ensemble average of the individual frame psf. If the

tem filter just derivcd, noise i' has a known mean value and the variance is
One way to reduce the effect of noise is multiframe sufficiently small, degradation measurement or estima-

averaging, Several frames of the degraded image may tion techniques can be applied to the averaged image
be a%,ailable (as is often the case with video data), and in Eq. 25 to generate an estimate of h'. Restoration

* noise reduction can occur by averaging these image can then be carried out on this averaged image to ob-
frames. Multifraine averaging relies on the assumption tain a restored version of the original object.

.. -'

,: 4.0 IMAGE RESTORATION TECHNIQUES

When sur\eving the image restoration literature, it perform some operation on the degraded image to ef-
, becomes apparent that a plethora of restoration tech- feet an "improvement"; i.e., a restored image is gener-

niques exists. Each technique is based on particular as- ated that in some sense more closely resembles the origi-
. sumptions about the object and imaging system and is nal object. The choices of criteria used to motivate the

motivated by some form of restoration criteria. A com- improvement and determine the restoration technique
* prehensixe discussion of all restoration methods is be- fall into four general categories: (a) least squares esti-

vond the scope of this report. Instead, wke consider only mates, (b) equivalent power spectral densities, (c) Bayes-
the most popular and successful methods for both LSI ian estimates, and (d) ad hoc methods.

-X1 and ISV imaging systems. The strengths and weaknesses Techniques based on least squares estimation treat
of each method are identified and restoration examples the original object as a deterministic unknown function.
.arc supplied Mhere possible; hossever, rather than pre- This criterion requires that the squared error between

0 senting a sonemihat long and disjointed list of restora- the degraded image and the filtei. d estimate be
tion tcchniques, we begin with the general concepts that minimized,
tic these varied methods together.

Minlel Min g - hi *( . (26)
4.1 RESIORATION CRITERIA

- . (Tixen a degraded image, xse would like to use the Because of the invariant filtering operation, least squares
- ."prior knoslcdue obtained ahout the itnaginu svstem to estimation onlv results in I.S restoration techniques.

16
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The second category is that of equivalent power spec- techniques. Table 2 lists the categories of restoration
tral densities. Techniques that fall into this category treat criteria and the restoration techniques associated with
the object as a stochastic process and generate a restored each one. These techniques are discussed in detail in
image whose psd is equal to the known original object Sections 4.2 and 4.3.
psd,

Sff = Sff . (27) 4.2 LINEAR SPATIALLY INVARIANT
TECHNIQUES

Bayesian estimation gives rise to a number of estima-
tion criteria depending on the cost function assigned to Recall that the LSI imaging system model is
errors. The stochastic properties of the object and
noise are used to develop minimum mean squared error
(MMSE), maximum entropy, and maximum a posteriori g(xi,y,) = - X, y, - y)
(MAP) estimates.

In addition to techniques based on these well-defined -

criteria, others developed on heuristic arguments can x f(xo, y0 ) dxo dyo
also provide good restoration. Application-specific con-
straints such as non-negativity or second order smooth-
ness can also be introduced to generate various hybrid + n (x,,) , (28)

Table 2
Restoration criteria and techniques.

Techniques
Category Criterion LSI LSV

1. Least squares estimate Mini Ig - h * 1 Inverse filtering

2. Equivalent power spectral = Homomorphic filtering
density Sf= Geometric mean filtering

(a =1/2, ' = 1)

3. Bayesian estimate
.Minimum mean square Min Ef If - ffl2 I Wiener filtering Analytic continuation
error Recursive filtering

Maximum entropy Max I -f In f Maximum entropy
filtering

Maximum a posteriori Max PrItl.gl Maximum a posteriori
filtering

4. Ad hoc methods Constrained
deconv lution

Geometric mean filtering
(0 a :s 1, y-

'H. I. Van Trees, Detection, Estimation, and Modulation
lheorv, Part I, Wiley & Sons. New '  (1968).

,.4
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• 1
where the noise is modeled as additive and signal inde- where the energy conserving property of h has been
pendent. In the Fourier domain, this becomes used 12 and I l I I denotes the signal norm. 15 The SNR

for the image restored by inverse filtering is defined as

Gf,,) F(f,,f,) H(fff) + N(f,,f,) • (29) 1 VI111

Jrn * nil < Ilm ll llnil (35)

The subsections below discuss various methods of im-
age restoration applicable to LSI systems. They incor- The ratio of the two SNRs is the degradation in SNR
porate techniques that treat the degrading filter, H, as caused by the inverse filtering restoration process,
deterministic and known, deterministic with unknown
parameters, and completely random. SNR 1 1 (

Z SNRg Imli IHn'l (6

4.2.1 Inverse Filtering 
.I

The technique of inverse filtering or method of least
squares assumes a known (or accurately estimated) de- ty. Typical values for H 'I II for real imaging sys-
terministic filter transfer function, H. It generates a lin-
ear restoration filter with psf m(xv), which satisfies tems are on the order of 100 or higher, demonstrating
earotie cri ter witho f minimusq, whichsati that the SNR can be severely degraded by a factor of
the criterion of minimum squared error, 100 or more when using inverse filtering restoration.

This points out the general ill-conditioned nature of
uMni e= Min I Ig - h * 1A2 1 . (30) image restoration, which results from the property that
/'t I small perturbations in the degraded image, g(x,y), can

cause large changes in the restored image, f(x,y). For
where example, in the noise-free case,

f=m* g. (31) g =h *f

This is easily solved to yield 3  f = m * g = f (assuming no 0/0 ratios), (37)

.Vll,, r= FTIml I1/H (32) but when an arbitrarily small amount of noise is added,

g =h * f+ n,
and

Sf= m *g =f+ n, (38)
1."e"'e .. = FT fl = G/H. (33)

where nb is not necessarily small and can in fact bequite large.
Equation 33 demonstrates that the inverse filter has Inverse filtering, however, does have its advantages.

vsevere problems whenever H = 0. If H has zeros in the
V s0It is easy to implement and can be done quickly. It re-

desired image bandwidth, the image cannot be perfectly quires only knowledge of the system psf, unlike many
restored, even in the absence of noise, because of the other techniques that require knowledge of the noise
indeterminate 0/0 ratios that occur. When noise is pres- and object characteristics. In addition, in high-SNR en-
ent, the zeros of H serve to amplify the noise power i t g".' Vironments it gives restorations with good resolution
at these frequencies. If H is reasonably band limited, (providing there are few zeros of H in the image band-

* high-frequency noise power can also be severely in- width). To avoid indeterminate ratios, a pseudoinverse
creased filter cai, be defined as' 2

A rough measure of the degradation in signal-to-noise
ratio (SNR) from pre- to postrestoration is found by H*
defining a voltage SNR for the degraded image, Mpeudotnvere = H lim (39),.'- -0 IH I 2 + 3

* !*h f I lfl
SNR, = - [. E. Franks, Signal Theory, rev. ed., Dowden & Culver.

SI nlI I ln1l , (34) Stroudsburg, Pa. (1981).
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Figure 2 shows an original object function. Figure 3
shows the object after it has been blurred by a low-pass
filter and degraded by noise for both a high SNR
(33 dB) and a lower SNR (23 dB). The restoration gener-
ated by inverse filtering is given in Fig. 4 for the high-
and low-SNR cases. As expected, the amplified noise
severely degrades the restoration at low image SNRs.

i." 4.2.2 Wiener Filtering

The poor noise performance of inverse filtering led
to the development of alternate restoration techniques
designed to restore degraded images with lower SNRs.
This approach treats the original object and noise as -
statistically uncorrelated random functions and con-
structs a Bayesian estimate of the object. The system
transfer function, H, is initially treated as determinis-
tic and known. This method entails finding the LSI (a)

restoring filter that minimizes the mean squared error
of the resulting estimate. The linear filter that accom-
plishes this is commonly known as the Wiener filter. 16

The Wiener filter is derived as follows. The mean
squared estimate error is

e Elif-f-2

El If- m *g11 , (40)

aid.m" .

(b)

Figure 3 Object with Gaussian blur and additive noise
",, with (a) SNR = 33 dB and (b) SNR = 23 dB. 2

Wi where El • I denotes the ensemble average and m is the
psf of the Wiener restoration filter. The technique re-
quires that we find the function mn(xy), which
minimizes this error. Using the central concept of lin-
ear mean square estimation theory, i.e., the orthogonal-

11A' 3% ity principle, which states that the error in the estimate
I " must be orthogonal to the data, we obtain

El f(x" ,.il) - n (xi ,"1 ) * g(xi ,.Y )]((41)

Figure 2 Original object function. 2 g (41)

__ ______________ __or

'. Papo ul,, Prolbahilitv, Random Variahles, und .Stochas-
It( Prorcese , %ic(ra%%-|till, Ncx York (1965). R,, (Ax,vy) = m (Ax-,Ay) * R,, (Av-,Ay) , (42)

*' 19
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Mwien.r = Sfg /Sgg (44)

We have implicitly made the assumption that the ran-
dom object and noise processes are statistically wide-

,, sense stationary. This is frequently not true for real ob-
jects, thereby limiting the class of objects for which
Wiener filtering truly results in the MMSE estimate.
However, we proceed by not only assuming thatf(xy)
and n (x,y) are wide-sense stationary, but also constrain
them to be uncorrelated. Then

HSif
AfWiener - (f5

IHI
2 Sff + S,,

where S, is the psd of the noise. This may also be
%, written as the product of a simple inverse filter and a

",_ -. modifying filter,

(a)

___ _____Mwiener - - - J . (46)'" .... .H H 11 + S,,/IHI Sf
'"

The modifying filter, M., is dependent on the
stochastic properties of the random object and noise
functions. At frequencies where the noise psd is negligi-
ble, the Wiener filter behaves as an inverse filter. At

" IER frequencies where the noise dominates, the modifying
filter provides a weighting factor that adjusts the value
of M to be appropriately small. The modifying filter
thus supplies a smooth transition between the two noise
extremes. Slepian" considers the case where the de-
grading filter, H, is also modeled as a random function,
and finds that the restoring filter is found by replacing
H* and IH12 in Eq. 45 by EIH*1 and E(jHI2 1,
respectively.

The Wiener filter does not exhibit the singularity
0problems associated with the inverse filter at the zeros

of the system filter H. In fact, it is the presence of noise
(b) that ensures that the Wiener restoration filter is zero

whenever H is zero.
Figure 4 Inverse filtering restoration of Fig. 3 with (a) The restoring filter derived in Eq. 46 is the optimum

.. SNR = 33 dB and (b) SNR 23 dB1 2  LSI MMSE filter. However, nonlinear filters may exist
that yield smaller mean squared errors. In general, the

where R,, and R.,, are the cross- and autocorrelation MMSE estimate is given byf = EffjgI, which may
functions off with .g and g, respectively. The Fourier be a nonlinear function of g. If f and n are jointly
transform of Eq. 42 yields Gaussian and stationary, the MMSE estimate reduces

to a simple linear filtering operation and the true MMSE
S1 . M S',, (43) estimate is equal to the LSI MMSE estimate.

w.herc ., and .,,, are e analogous psd. The MNIMSE 'D. Slepian, "Linear Least-Squares Filtering of Distorted Im-
Wiener restoration filter is ages." ,I. Opt. Soc. Am. 57, 918-922 (1967).
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Examples of Wiener filtering restoration of the 46) to reflect the degree of importance that should be
degraded images in Fig. 3 are shown in Fig. 5. Some attached to this stochastic information. This results in
resolution is lost in the high-SNR case; however, sig- the parametric Wiener filter
nificant improvement is made in the low-SNR case (cf.
Fig. 4). 1 [ 1 ] We(47)

A parametric version of the MMSE Wiener filter has MParametric Wee1+ S IHI S
also been developed. For a specific application, the user
can weight the psd ratio in the filter demoninator (Eq. where -y - 0. The parameter -' is determined subjec-

tively by the user for a particular image.

S4.2.3 Geometric Mean Filtering

We have determined that the simple inverse filter can
demonstrate good resolution performance at spatial fre-
quencies where the signal dominates the noise (usually
lower frequencies), but is notoriously poor in high-noise
regions (usually higher frequencies). The Wiener filter
has excellent noise performance but achieves this at the
expense of smoothing the restored image by the modify-
ing filter, M,. This can be seen by examining the

MMSE restored image in the Fourier domain,

HM, (HF+N)
H NM,
MF + (48)

(a)
The restored image is no longer a noisy version of the
ideal object as in inverse filtering restoration, but a
smoothed noisy version of f(xy).

100- -Many applications require better combined noise and
I,,,4 resolution performance than either method provides in-
Il If ' " Idividually. A heuristic technique that attempts to recon-

cile the trade-off between resolution and noise is geo-
metric mean filtering restoration. The restoration fil-
ter is defined as

MCeometric mean = [MInversel Im [Mparametric Wiener jI -

(49)

I The parameters 0 !5 a !5 1 and -y _ 0 are user defined
for a particular image. The user's choice of ar thus shifts
the emphasis from Wiener to inverse filtering as a varies
from zero to one.

(b) 4.2.4 Constrained Deconvolution
Both Wiener and geometric mean filtering require

Figure 5 Wiener filtering restoration of Fig. 3 with (a) knowledge of the stochastic properties of the noise and
SNR = 33 dB and (b) SNR = 23 dB.' 2  the original object. Constrained deconvolution is simi-
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lar to inverse filtering in that it treats the object as an the restored image will have these properties but they
unknown deterministic function. will be obtained without detailed knowledge of the ob-

*, ,This technique minimizes the square of a linear con- ject and noise functions' stochastic characteristics.
straint on the estimate, Figure 6 shows the image restoration achieved by each

1'>. of the LSI techniques discussed so far for a defocused

Mi I lc(xy) * f(xy) 1 , (50) object with additive high-frequency noise.

4.2.5 Homomorphic Deconvolution

subject to a fixed value for the estimate error, Homomorphic image processing for use in a posteri-
ori degradation determination was introduced in Section

h*,l,() 3.2. We can proceed with the results of that section to
e = Ig - h * ; 2 = Ein l (51) develop a homomorphic restoration filter. This tech-

nique is the work of Stockhan et al. 11 and Cannon, '8

The sampled constraint function, c(x,y), is frequently
chosen as a second order or higher difference matrix. .,.
The second order difference matrix, for example, is de- -

fined as the Kronecker product of a tridiagonal matrix
C, with itself, C = C, x C1. The matrix C, per-
forms the one-dimensional second order differencing
operation (f(x+ 1) - f(x) (x) f(x- )1 on
the data and is

(b)

-2 1 0
1 -2 1

1 -2

1 -21:: ~ ~ 0 1 -2 _-J r

Minimizing the second order difference will prevent the .

resulting estimate from containing wild oscillations, dl

-. The method of Lagrange multipliers may be applied
.J1% to yield the restoration filter - -

M(on~tratned deconolurion -2 2 %.o

*4. -I HI+ u'i i +
,'" H [1 + -ICI 2/IHI (52) " , mi-. ,,,

Figure 6 Restoration by various techniques; (a) origi-

where C FT1 c l and -y is related to the Lagrange mul- nal object, (b) original with defocus and high-frequency

tiplier. The value of y is adjusted so that the fixed er- noise, (c) inverse filtering restoration, (d) Wiener filter-
ing restoration, (e) geometric mean filtering restoration

ror criterion is satisfied. = 2, -y = 1, (f) constrained deconvolution restora-
Using constrained deconvoh'tion, one can thus choose tion using C = second difference. 12

an estimate error, El n I (perhaps determined a poste-
riori from the degraded image), and generate a restored I'M. Cannon, "Blind Deconvolution of Spatially Invariant
image that has the desired properties provided by the Blurs with Phase," IEEE Trans. Acousi. speech SignalPro-

constraint, c. The attractiveness of this technique is that cess. 24, 58-63 (1976).
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and is also known as blind deconvolution. It is unique where the noise is assumed to be additive with psd S,,,.
among the restoration techniques discussed so far be- Then,
cause it does not assume that the system degradation
filter H is known. [ Sff ]

As in Section 3.2, we subdivide the degraded image IMI2 (59)into N regions and Fourier transform each region. The = H f + S.1
psd of the blurred image is estimated by (ergodic as-supton which is the magnitude of the geometric mean filter with
umi)a = 1/2 and y = 1,

N
1 2,(53 I MHomomorphic deconvolution I =

I lCeomdric mean, a 1/2., = I I * (60)

The image estimate in the Fourier domain is
Thus the magnitude of the homomorphic filter is the
magnitude of the geometric mean of the inverse filter

1 = MG , (54) and the Wiener filter for wide-sense stationary and un-
correlated object and noise. This exciting result is ob-
tamined without knowledge of the noise psd or the degra-

', hei e XM is the homomorphic restoration filter yet to dation filter H. The only information required is an es-
bc determined. The psd of the estimate is therefore timate of the object psd (Sif) and the degraded image

.4. itself. However, this technique yields only the magni-
tude of the restoring filter. Unless the degrading filter

Sif = IMi I Sg. (55) is known to contain no zero crossings (e.g., Gaussian
blur), additional methods such as those described in Sec-
tion 3.2 must be used to estimate the restoration filter

The restoration criterion (see Table 2) for this tech- phase. Figure 7 shows the effectiveness of this technique
r nique is to equate the original object and estimate im- on the blurred images in Fig. 3.

age psd, i.e.,
4.2.6 Recursive Filtering

Sf = Sff Recursive filtering is a specialized restoration tech-p nique that assumes that the original object is corrupt-
or ed only by additive white noise. The degradation psf

of the imaging system reduces to h(xy) = 5(x,y), a
I M S = S , (56) two-dimemsional dirac function, for this technique and

which yields g(x,y) = f(xy) + P(x,y) . (61)

1 lMHomo..phc deconvolution I = [Sff/Sgg] . (57) The object f(xy) is modeled as a two-dimensional
wide-sense Markov process. Recall that for a one-dimen-
sional Mh order Markov process, the value of the func-

Here, Sf is assumed known or may be estimated from tion at a given sample location is dependent only on
an undegraded image with structure similar to that of the values of the preceding N samples. A two-dimen-

- the original object. sional (N,M)th order Markov process stipulates that the
The homomorphic restoration filter derived is the sample value at a given location is dependent on the

reciprocal of the degrading filter estimated by Eq. 20. values of the preceding N by M block of samples,
However, it is not a simple inverse filter as the follow-
ing argument illustrates. If the object and noise are wide- Pr lf(x + 1, y + I) I f(ij) for all i - x, jsy
sense stationary and uncorrelated random processes, we

• " know' . know = Pr tf(x + I, y + 1) If(ij) for

S, =IHI 2 S + Sf, (58) x - N < i !s x, y - M < j <5 y 1 (62)

23
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The coefficients Ja, I are found by minimizing the
mean squared error for the estimate f(x,y) and are

a, = px (64a)

a2 = Py (64b)

a3 = PxPv + a4  (64c)

PXC(1,O) + pyC(O,1) - pxpyC(O,O).... 4 (64d)
a.--.C(O,O) + ,

where C is the object and estimate cross covariance,

S...x, Ay) = EI [f(xy) -f(xY)I

A(x + Ax, y + Ay) -f(x + Ax, y + y) ,(65)
,(a)

and ar2 is the variance of the white noise.

For Eq. 64, the autocorrelation function of the ob-
ject is postulated to be spatially separable and equal to

Rf (ax, 'Ay) = P" t1 py 1A.v (66)

Recursive filtering is substantially different from the
other LSI restoration techniques previously described
because it operates in the spatial and not the Fourier

", -domain. Since the point spread matrix of the filter is
-, . of limited non-zero extent (four-element array for a first

" , order Markov process), the spatial convolution can be-" . - -§.. ."." -...t ..- implemented quickly on the computer. A distinct disad-

, vantage of ths approach is that the adjacent sample
S., .. . . correlations must be assumed constant throughout the

" " -. ..- : -entire image to yield a spatially invariant restoration fil-
",'5" (bi ter. This is clearly not realistic for most images, which
S.--'-

Figure 7 Homomorphic deconvolution restoration of may contain, for example, regions of essentially constant".,.

Fig. 3 with (a) SNR = 33 dB and (b) SNR = 23 dB.' 2  background (p, = = 1) in addition to regions of
rapidly varying intensities (Px,P. << 1).

* In image restoration applications, this technique is This gives rise to the development of the spatially vari-
frequently used assuming that the original object is a ant restoration technique of regional recursive filtering.
simple two-dimensional first order Markov process. The Each regional filter may be applied to areas of the im-
linear estimate of f(x+ . v+ I) has been found to age that have similar spatial correlation properties. Seg-
be' mentation of the image into these regions and the de-

termination of the individual recursive filters clearly add
V(x + I ,v + I) al(. + ],Y)+ af(.xVy + I) to the complexity of the technique. Regional recursive

* filtering also creates artifacts at the region boundaries
+ af(xvy) + a4 g(xy) . (63) that must be smoothed by additional processing.
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4.3 LINEAR SPATIALLY VARIANT coordinate transformation of the result yields the re-
TECHNIQUES stored image in the original coordinate system.

The application of this approach is limited to those
Section 4.2 outlined those restoration techniques ap- LSV systems that are decomposable into the general

pli~able to LSI systems. Because the imaging system was form shown in Fig. 8. However, the effects of many
modeled as spatially invariant, the powerful theory of forms of spatially variant image degradation can be de-
Fourier domain analysis could be used. However, real scribed by this decomposition. The applicability of this
imaging systems are seldom spatially invariant and are coordinate distortion technique for restoring images de-
more appropriately modeled as graded by certain types of camera motion 19.20 and by

the optical aberrations of astigmatism and curvature of
,e -)field has also been shown.

' -" ~ " For example, a simple rotation of the camera about
the optical axis yields the LSV result

x f*(x,,,y,, ) dx,, d,,
"g(xy,) = 7f(x,, ds(, (69)
-a"- + n(x,,v,) , (67) + _

wNhere the system psf is a function of both the object along x2 + y, = x + y2
o and image coordinates.

a The simple solutions afforded previously by Fourier The limits of integration are from
a' _analysis techniques no longer apply because of the spa-
! .tial variance of the system psf. Restoration techniques

for LSV systems are, therefore, fesser in number and x, = X, x,, = x, cos wT + y, sin wT

; more difficult to implement. to

* 4.3.1 Isoplanatic Patches
The simplest approach to LSV restoration is to di- Y" = y, Y0 = x,sin T+ ycostT.

,ide the blurred image into regions or isoplanatic Here,
patches. In each isoplanatic patch the spatially invari- = constant angular rotational velocity,
ant assumption is approximately valid so that we may T time of photographic exposure,i model the system as picce\isc LS, T=tm fpoorpi xoue

ds,, = differential path element,

and uTis constrained to be less than 2r radians (over-
- _r,, , - jy,, all camera motion must be less than one full rotation).

The imaging system is otherwise considered to be per-
" feet, and no noise is introduced for this simple exam-
x .f(.,,,,,) dx,, dv,, (68) pie. By transforming to polar coordinates (r, 0), we ob-

4 tain
for (x,,. in the p/h isoplanatic patch. Any of the

. previously derived spatially invariant restoration tech- [,,=", T [(rO
niques can then be applied to the individual patches. g(r,,,) = dO,,
As with regional recursive filtering, postprocessing is o,:'

-,, usually required to reduce artifacts generated at the re- f(r,,,O,-
stored image isoplanatic region boundaries. - dO

:. 4.3.2 Coordinate Distortion Method I"."= fr, O,- ) h (0) dO (70)
*:; " A novel approach to spatially variant image restora-

tion developed by Sawchuk and Robbins and Huang _

hinges on finding a nonlinear coordinate transformation "'A. A. Sawchuk, "Space-Variant Image Motion Degradation
that maps the imaging system to a linear spatially in- and Restoration," Proc. IEEE 60, 854-861 (1972).

4 variant domain. An LSi technique can then be used to 2"A. A. Sawchuk, "Space-Variant System Analysis of Image
restore the image in this new domain, and an inverse Motion," .1. Opt. Soc. Am. 63. 1052-1063, (1973).
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f(x0 , YO) Spatially variant psf glx;, v;)
hv(xo Yo, xi, Y) d

i FLS 7ssystem-"

f0 Y) Coordinate distortion 1 [4 V Spatially 31u ) Inverse coordinate distortion gXy

, - j b I b (xo, yo
)  

I 0 invariant psf xi 
=  
Cl1(U" v)

, "v b2lx°" YO) h hI (u, V) It yi = C2(U, V)

L

" Figure 8 LSV coordinate distortion restoration.

where h(O) = (w/¢) for - wT :5 0 :5 0. The system is nique used to develop the restored image in Fig. 9c was
spatially invariant with respect to the new coordinate a simple inverse filier.
domain. An LSI technique can now be used to restore The drawbacks of this technique stem from: a) being
the image before transforming back to Cartesian coor- able to define the coordinate transformation for a given
dinates. Figure 9 shows the usefulness of this technique LSI image restoration application; and b) determining

* for an image blurred by camera rotation. The LSI tech- the object and noise stochastic properties in the new
coordinate system. The latter point is relevant when LSI
estimation is used to restore the degraded image. For

A example, we cannot expect that minimizing the mean
squared estimate error in the transformed domain will
necessarily minimize the mean squared error in the origi-
nal coordinate system. However, for specific applica-

A tions (e.g., camera motion and aberration correction),

,A. this technique may be quite useful.

I. ~ ' ~4.3.3 Maximum A Posteriori Restoration
;wt 1 Maximum a posteriori (MAP) restoration is a non-'A- ,linear iterative technique that, in its most general form,

I. ' is applicable to spatially variant imaging systems. We

describe the technique for a discrete imaging system
where the sampled image, object, and noise data are

.lexicographically ordered into one-dimensional vectors,

* . ~ ~~ ~ ~ f~ +eiorpial gfn, (71)

S and H is a two-dimensional matrix representing the ef-

fects of the spatially variant system psf.
The MAP estimate of the vector f is given by

____-- _Max )Pr(flg)1 .(72)

Figure 9 Coordinate distortion restoration of rotation- Bayes's rule states
al blur: (a) rotationally blurred object. (b) blurred object

transformed to pclar cooidinate3, (c) LSG restorat;o;. Prlglfl Prlfl
of transformed object, (d) restored image transformed Pr fl Pr (731fP-
back to Cartesian coordinates. 12 PrIg) ' (
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which is the expression we need to maximize with re- can be placed on the object, it is possible (in theory,
spect to f. If the original object and noise can be mod- at least) to determine the object spectrum outside of
eled as multivariate Gaussian processes, i.e., the system bandwidth. The restored image would then

achieve the property of spatial superresolution-reso-
I 1 ) lution beyond the limit imposed by the system cutoff

Pr- f I = A exp ]-[ (f frequency. Two techniques that have this property are
2 74) maximum entropy restoration 43 and the method of

analytic continuation. 22 23 Unfortunately, both tech-
'., C In T I niques require extremely high SNRs to achieve super-

2 n A [C ]- n , (75) resolution.
Maximum entropy restoration is based on modeling

%% there [Cf] and [C,] are the object and noise covari- the original object vector f (suitably normalized) as a

ance matrices, the MAP estimate is found by iteratively probability density function (pdf). This condition guar-
si antees positive values for the restored image vector f.

onA derivation based on multinomial pdf (e.g., see Refs.

4 and 5) yields

f~p = f + [CIHr[C,]- ' [g - H 'MAP] (76)

fMax entropy = exp I - 1 - 2X[H* I
for A P . Although the multivariate Gaussian assump-
tion may seem overly restrictive at first, it gives a rea- (g - H fMa etropy)) , (77)

.* sonable model for many images. The underlying struc-
ture of the object can be modeled in the mean vector where the additional constraint 0 g - H f 1 = 11n112
f, with the finer structure described by Gaussian varia- has been incorporated using the method of Lagrange
tions about this mean vector. This may be a more realis- multipliers. Maximum entropy, like MAP restoration,
tic model than that obtained by assuming a wide-sense is a nonlinear iterative technique. The estimate derived
stationary object. Recall that the stationarity assump- is intrinsically not band limited and thus superresolu-
tion requires that every element in the mean vector f tion results in high-SNR cases.

.- be equal to the same constant value (as in Wiener, ge- The method of analytic continuation is based on an
ometric mean, and recursive filtering). eigenfunction expansion of the spatially limited object

The MAP restoration technique requires a great deal whose Fourier spectrum is known only in the system
of prior knowledge as Eq. 76 demonstrates. The object bandwidth. Prolate spheroidal wave functions have the
and noise stochastic properties, as well as the imaging interesting properties of being a) orthonormal on the
system degradation effects, must be specified. The iter- real line and b) a complete orthogonal basis for the set
ative nature of this technique also makes it computa- of functions band limited to a specified bandwidth. If
tionally expensive and convergence is not always guaran- the imaging system is modeled as a spatially separable
teed. However, MAP restoration has been used success- system defined by a rectangular aperture, the dual char-
fully in certain applications 2' and can be extended to acteristics of the prolate spheroidal wave functions

" nonlinear spatially variant imaging systems as well. (pswf) lead to a non-band-limited estimate for the origi-
4.3.4" Tnal object (see Refs. 22 and 23 for details). However,
4.3.4 Superresolution Techniques image SNRs on the order of 30 dB or more are required

The limit of attainable image resolution using the deft- for analytic continuation to result in useful restoration.
nition derived from the Rayleigh criterion 2 is deter- In addition, the pswf and the resulting image estimate•~I adiin thee byw and cutof resultin imagen estimatmgin
mined by the cutoff spatial frequency of the imaging are difficult to compute, which further limits the use-
system. Even with the best possible restoration tech- fulness of this technique.
nique, object information outside of the system band-

width is lost; we would expect a minimum resolvable
spatial element corresponding to the inverse of the sys-
tem cutoff frequency. However, if certain conditions 22C. K. Rushforth and R. W. Harris, "Restoration, Resolu-

tion, and Noise," J. Opt. Soc. Am. 58, 539-545 (1968).
"C. L. Rino, "Bandlimited Image Restoration by linear

'B. R. Hunt, "Digital Image Processing," Proc. IEEE 63, Mean-Square Estimation," J. Opt. Soc. Am. 59, 547-553
693-708 (1975). (1969).
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5.0 COMPARISON OF RESTORATION TECHNIQUES

The restoration techniques discussed in Sections 4.2 That the visual quality of the MAP, homomorphic, and
and 4.3 are summarized in Table 3. As the second geometric mean filters is, in general, better than Wien-
column of the table demonstrates, the LS1 restoration er filtering may be surprising at first, since Wiener filter-
filters appear to be strikingly similar. We have seen that ing supplies the MMSE estimate. flowever, Wiener
these filters can even be equivalent under certain con- filtering yields the MMSE estimate for wide-sense sta-
ditions; homomorphic deconvolution is equivalent to tionary object and noise functions. This assumption is
geometric mean filtering if the object and noise are un seldom true for real images. Also, the Wiener filter
correlated and wide-sense stationary. Also, constrained trades improved noise performance for reduced image
deconvolution is equivalent to parametric Wiener filter- resolution. As studies of the human visual system have
ing if the constraint is chosen such that C = S, 1/St , shown, 25 human observers are usually willing to accept
Even nonlinear maximum entropy restoration can be some additional image noise in order to gain improved
related to a simpler LSI technique. If a linear approxi- resolution.
mation to the exponential in Eq. 77 is made and [IM The noise performance of the techniques shows that
is assumed LSI, discrete pseudoinverse filtering resto- inverse filtering, as expected, provides unsatisfactory

. ration results, 1_2 restoration in low-SNR environments. This technique
Given the similarities between the restoration filters, is especially sensitive to high-frequency noise. The other

how does a user choose one technique over another for restoration filters listed in Table 4 work well in noisy
a particular application? There are important factors environments. As the SNR increases, however, the resto-
that differentiate the image restoration techniques and ration achieved by any of the techniques converges to
act as guidelines for application, including the following: that of simple inverse filtering.

-1. The restored image quality or perceptibility to a The degree of information necessary for each tech-
human observer is an important performance fac- nique varies widely for the restoration methods listed.
tor that depends on the restoration technique used. Homomorphic deconvolution requires the least amount

1- 2. The noise performance of a given technique is a of a priori knowledge while Wiener, geometric mean,
function of the overall image SNR as well as the and MAP filtering require detailed information about
type and severity of the image degradation. the imaging degradation and stochastic properties of

3. Each technique requires certain a priori knowl- the object and noise. The degree of information need-
edge and imposes restrictive assumptions on the ed for inverse filtering and constrained deconvolution
imaging system model which limit its application, falls between these two extremes.

4. The feasibility of using a restoration technique for Often, the most important factor in choosing a resto-
a specific application is often determined by the ration technique is its computational complexity. If large
length of time required to implement the al- amounts of image data need to be processed quickly

- . gorithm. and cost effectively, it would be implausible to use an
Most of these factors are delineated in Table 3. One iterative algorithm (without guaranteed convergence) like

* other factor that influences the performance of the resto- MAP restoration. Evet, :he partitioning required to
ration technique is the nature of the system noise. The compute and apply the homomorphic filter may take
noise type, auto- and crosscorrelation properties, and too much time for such an application. Inverse, Wiener,
action on the system (additive, multiplicative) will also geometric mean, and constrained deconvolution filter-
effect the performance. This effect is difficult to char- ing have moderately fast implementations using two-
acteri/ ' other than by statirg that we would, of course, dimensional fast Fourier transform (FFT) algorithms.
expect reduced restoration performance for techniques Wiener filtering has an additional advantage; the resto-

0 with restrictive system assumptions that do not fit the ration filtering can be performed in any unitary trans-
applicat. In. form domain. Fourier, Hadamard, identity, or Karhun-

A quick (albeit coarse) comparison of the most con- en-Loeve transform processing is chosen depending on
monly used restoration techniques for the four perfor- which technique yields the fastest implementation for
mance criteria defined above is given in Table 4.2124

M .. annon, t. .1. irussell. and 3. R. Hunt, "Com par-
i,,ol oft iaLc Retoration Methods," App/. Opt. 17, :I. C. Stockham, .r., "Image Processing in the Context of
,",4 +9 (1978), a Visual Model," Proc. IEEE 60, 828-842 (1972).
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Table 3
Summary of image restoration techniques.

Restoration Restoring Restoration A priori knowledge Performance Disadvantages Restoring filter
technique filter criterion and assumptions advantages variations

Inserse fihrring .% = Minig - h*J2 LSI system Computational Amplifies high- Pseudoinverse
H H known simplicity frequency noise M = H* -

Indeterminate when HH
H1= 0 ri

A ,ener tilterig 'f = I v + . Min E If - P'i LSI system Optimum linear MSE Stationary f assumption Parametric Wiener
H H.S.,. _ , known estimate unrealistic M = I

n, f stationary Good noise performance Restored image is M H

A44=Ow henHl= 0 smoothed I+'

(,eo retr, "tean A. = [ + 2, User defined LS! system Combines good low- Stationary f assumption True geometric mean,
fSiltertng H H S,1. S. S, known frequency restoration unrealistic a = ', r = I

Sn f stationary of inverse filtering with Iterative and subjective inverse filter, a = I
5 high-frequency noise method to find param- Parametric Wiener,
X performance of Wiener eters y. a ia = 0

filtering
User tailored for each

image

onvtnve t= A t I Min f 11 system User-defined constrains Iterative method to Finite second degree
deconsolutwin H H subject to H, 11, known generates desired find -V difference matrix

'e h nJr C user defined restoration without Restoration more noise IciO l
= it knowledge of S,. S,. sensitive than Wiener Human visual response

filtering model Ic(ij) I

Homomotphic %f = S, = 5,, [SI system No knowledge of H Magnitude-only restora- Equivalent to geometric
deconsitlutmOn [iG 5,, known required tion filter requires mean with a = V.L- J Extent of H < area of Good noise performance additional processing to V = I for stationary f,

partition blck determine filter phase n
Ergodic g Computationally complex

Reursie Mnt EiJ - sf I Ideal LSI imaging system Quick filter Restrictive and unrealistic LSV regional recursive
init-ng Whire additive noise implementation assumptions filtering

f(x,y) is (N.M)th order
wide-sense Marko

R, and C, knovn

i~iplonatic yuh -An), til filter ISV system is piecewise Straighiforward Computaionaly
fihetmg LSI plus LSI technique implementation expensive

assumptions

-srdinav Arc s SI filter - L.SV system described as Fast LSV restoration Only works for certain -
. ditorion metho, d LSI after known achieved when decomposable LSV
% coordinate transforma- coordinate transforma- systems (Fig. 8)

:% ,ion plus I.SI technique lion known
assumptions

"t At1 tesltoratsn Stay PI il) I.SV system Visually pleasing Iterative technique -
% f and g multicariate resioration Convergence not

Gaussian procee,,, guaranteed

known

ilanmur- Star I / 1 I I.SV system Visually pleasing Iterative techmque
cnrt'y I. i non-negative restoration Convergence not

[/fl. I knon Superresolution guaranteed
Very susceptible to noise

" -\nalyt -- he\I'. I I P I I'V system Superres-.lutitor Computationally
a nrnn;nl~n f analytic and hand- expensive

limited to square hand Requires very high SNR
region (> 30 dB)

Prolate spheroidal wave
function known

1-or derails rreardinu rhi technique, see Section 4 2 6
It Svc vin 4 A I
ise r ir " 1 4
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Table 4

Comparison of restoration techniques.

Visual quality Noise Degree of required Computational
(moderate SNR) performance a priori knowledge complexity

Inverse filtering Fair Poor Low Low

Wiener filtering Good Good High Moderate

i Geometric mean
filtering Very good Good High Moderate

Constrained
Convion Good Fair Moderate Moderate"-,'"deconvolution

Homomorphic
deconvolution Very good Good Low High

, MAP restoration Very good Good High Very high

the particular image. 26 (See Ref. 12 for restoration al- And finally, what are the computational considera-
gorithms and additional insight on their implementa- tions for the particular applicatio" Are there reels of
tion.) data or a single image to restore? Is the data stored and

Ultimately, the choice of restoration technique is de- processed in an image processing laboratory or must
termined by the particulars of the application. What restoration be accomplished in close to real time? For
kind of visual quality is required? A restored image that very fast restoration applications, the format of the im-
will be subsequently processed by additional software age data can further influence the choice of restoring
for classification/detection purposes will not necessar- technique. For example, video image data received one
ily require the same degree of visual quality as one that scan line at a time lends itself to techniques that can
will be presented to a human observer. What is the sys- be implemented by one-dimensional line processing.
tem SNR and how severe is the degradation? If the sys- Even though faster two-dimensional FFT algorithms ex-
tem consistently operates at high SNRs, simple inverse ist that operate on a two-dimensional extension of the
filtering may suffice. What kind of prior knowledge is one-dimensional Cooley-Tukey butterfly operation,27

available? If little information about the system is most two-dimensional FFT algorithms are performed
* known or estimable, homomorphic deconvolution may by sequential one-dimensional FFT computations. This

be the most attractive technique. However, the user must makes techniques such as inverse, Weiner, geometric
remember the assumptions couched in this method: the mean, and constrained deconvolution filtering especially
non-zero extent of H is less than the partition size and applicable to scanned imagery.
H is real and non-negative.

2D. B. Harris, J. H. McClellan, D. S. K. Chan, and H. W.
• Schuessler, "Vector Radix Fast Fourier Transform," IEEE

"AN'. K. Pratt, "Generalized Wiener Filtering Computation Conf. on Acoustics, Speech, and Signal Processing, Hart-
Techniques," IEEE Trans. Comp. C-21, 636-641 (1972). ford, Conn. (May 9-11, 1977).
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6.0 CONCLUSIONS

Although the techniques discussed above represent tion criterion. Unfortunately, this usually does not lead
those most frequently used, they are only a subset of to a closed form expression for the restored image and
the image restoration techniques that have been devel- requires computationally intensive nonlinear program-
oped. Some additional methods are maximum likeli- ming to obtain a solution.
hood, maximum weighted Burg entropy, and even mini- New image restoration techniques can be developed
mum entropy. 12 Frieden 28 unifies Bayesian estimate simply by defining new restoration criteria. Most current

" methods under a general theory of maximum physical techniques are based on criteria that generate visually
likelihood (note, however, that Frieden's definition of pleasing restorations. However, if the restored image
maximum likelihood differs from convention). Several is subsequently processed by additional software rather

, . Fnonlinear and linear recursive restoration techniques are than presented to a human observer, it may be possible
" • studied in another publication by Meinel. 29  to develop new techniques that optimize the perfor-
-'- " With the exception of maximum entropy and MAP mance of this postrestoration processing. One applica-

restoration, the techniques in Section 4.0 do not guar- tion where this may prove profitable is in the area of
antee non-negative values for the restored image, f. If automatic scene detection and classification. Potentially,
the optical intensity of the object is measured by the one could develop a restoration technique based on a
function f (i.e., f _> 0), we would prefer that the re- criterion that would be tailored to give maximum prob-
stored image be non-negative also (f _> 0). This can be ability of detection and correct classification of the resul-
done by adding a positivity constraint to any restora- tant restored image scenes.

S.

% ,

;%. '-

-B. R. Frieden, "Unified Theory for Estimating Frequency-
(it-Occurrence Laws and Optical Objects," J. Opt. Soc. Am.

... 73, 927-938, (1983).
"L. S. Meinel, "Origins of Linear and Nonlinear Recursive

Rostoration Algorithms," J. Opt. Soc. Am. 3, 787-799
(1986).
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